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Nitric oxide (NO) is involved in many important reactions in  correct binding enthalpies. Basis set superposition error (BSSE)
atmospheric, surface, and biological processes. NO is a relativelywas corrected with the counterpoise method.

stable and unreactive radical, except towagh@d other radicals. The resulting minima have similar geometries for both NO
The possibility that the NO dimer, (N@)might be involved in benzene and (N@)-benzene complexes; one NO lies above the
reactions has been of interest since the 195836 For example, benzene ring with a centecenter distance of abb3 A (Figure
the oxidation of triphenylphosphine by nitric oxide follows formally  1). In the (NO)—benzene complex, the NO dimer retains its
third-order kineticsks of 108 M~2 s71 at 294 K3 geometry and the (N@plane is nearly parallel to the phenyl ring,

Here, we present theoretical evidence for the role of the NO with one NO fragment above the edge of phenyl ring.
dimer in reactions of NO with nucleophiles and show that
2.260

concentration of (NQ)increases in aromatic environments. /° //
Keq for the formation of the NO dimer is quite small in the gas 1.170 (ROMP2) K 00,50 N[d NN
1.141 (UMP2) i / \
2220
d=3.0

phase €104 M~1).3 However, (NO) is expected to be much more
reactive with nucleophiles since (NO much easier to reduce:
E1/2 (NO/NOf) = —0.76 V versus E1/2 [(NO)z/NzOzf] = =3. d=2.3
-0.38 v4

It has been proposed that a hydrophobic environment may ~
concentrate nitric oxide Chan and co-workers have reported that s
increasing NO concentration in cytochromes weakens the NO EPR 3!
signal® Enhanced NO dimerization has been observed by Yettes -
al. for NO trapped inside single-walled carbon nanotubksas

also been reported that NO, aromatic hydrocarbons, and some Lewis UMP2

acids form ternary Charge_transfer Complexes (MEn.ArH)’S Figure 1. The calculated structures Of NO, (N;ODJenzene, Neb_enzen& ]

besides the well-known charge-transfer complexes of MeH.° Zﬂgst(gggbenzene complexes with MP2/aug-cc-pVDZ (distances in
Many spectroscopic studies have demonstrated that siciglet ’

O=N-*N=0 (Cy,) is the global minimum in both the gas and An aromatic environment can be modeled by the following

condensed phasé&.The structure has O bond lengths of  hypothetical equilibria in the gas phase [CPMP2/aug-cc-pVDZ,

1.152 A, a N--N distance of 2.263 A, an®©N---N angle of 97.2, CPMP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ (in italicSy:

and a dissociation energy of 240 0.2 kcal/molt°
(NO), is also especially intriguing theoretically; the long weak NO +NO==(NO), AH=—2.0(-2.3) kcal/mol

N—N bond formed from overlap of twar* radicals is hard to NO + PhH=NO-PhH AH = —2.3 (~2.7) kcal/mol
predict correcth:1-14 Semiempiricait HF'2 and DF T3 theories fall N _ ’ '
to predict the geometry and dissociation energy accurately. Cor- (NO), + PhH==(NO),PhH  AH = —5.4 (=6.9) kcal/mol

related treatments, such as MP2, CPF, CCSD, QCISD(T), CCSD-  NO + H,0<=NO-H,0 AH = —0.4 (—0.4) kcal/mol
(T), MRCI, and CASPT2, do reproduce the geometry and enetyies.

Two models, NG-benzene and (N@)benzene, were studied  (NO), + HO == (NO),H,0  AH = —0.7 (-0.8) kcal/mol
to determine the effect of an aromatic environment on the NO
dimerization. Ab initio quantum mechanical calculations were  The binding energy for the (N@}x interaction is —3.1
performed with the second-order MgHePlesset perturbation theory ~ (—3.8) kcal/mol stronger than that of the N©r interaction. The
(MP2)t5 and the aug-cc-pVDZ basis set in GaussiaR®Restricted overall enthalpy change from NO monomer and benzene to£NO)
open-shell (for radical) and closed-shell MP2 methods were used PhH is—7.4 (—8.8) kcal/mol. Although the NO monomer is still
since ROMP2 reproduces the global (N®ucture and dissocia-  favored in aromatic surroundings due to the entropy loss upon
tion energy in the gas phase corredflyMP2 is also reasonable  dimerization, the dimerization equilibrium constant increases by
for benzene complexé8.The different orientations between NO  more than 150 times at room temperatufAG > —3 kcal/mol;
or (NO), and benzene were computed, and the global minima were INnK = —AG/RT).20
characterized by harmonic frequency analy3iEhe resulting zero- The difference is due to charge-transfer and electrostatic interac-
point energies (ZPEs) at the ROMP2/6+3&* level were used to tions between (NQ)and benzene (Figure 2, data from NIST). The
LUMO of (NO), is a somewhat-binding orbital and is lower lying

lk’m;‘éﬁi%é’_f California, Los Angeles. than the singly occupied degenerat orbital of the monomer,
$ The University of Tokyo. providing better charge-transfer stabilization with the HOMO of
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benzene (k). These interactions between NO, (NGnd aromatic nucleophiles. Thus, the reaction rate & ki/Keg) in the tri-
hosts may correlate with UWvis aromatic solvent onset wavelength  phenylphosphine oxidation by nitric oxide would be in a reasonable
increases by nitric oxid&. range; similarly, this can rationalize that TrmSH reacts with NO
much faster that-BuSH does.

Charge-transfer complexation between nitric oxide dimer and
aromatic molecules increases the activity of nitric oxide through
the enhanced NO dimerization. (NGhould not be overlooked in

(NO), benzene

i, L'“]MU?\ biological processes since many aromatic amino acid residues in
\HOMO g:? proteins can serve as aromatic hosts to induce the NO dimerization,

ﬁ ML\, and the resulting NO dimer is a good nitrosating agent and oxf@ant.
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